UPDATED. 2022-07-05 19:30 (화)
KAIST, 3차원 반도체 소자 집적으로 양자컴퓨팅 한계 극복
KAIST, 3차원 반도체 소자 집적으로 양자컴퓨팅 한계 극복
  • 최아름 기자
  • 승인 2022.06.24 12:27
  • 댓글 0
이 기사를 공유합니다

반도체 해독 소자 집적 기술 개발
대규모 큐비트 구현 한계 해결
대규모 양자컴퓨터를 위한 시스템 개념도. [출처=KAIST]
대규모 양자컴퓨터를 위한 시스템 개념도. [출처=KAIST]

[정보통신신문=최아름기자]

기존 양자 컴퓨팅 시스템의 대규모 큐비트 구현 한계를 극복하는 3차원 집적된 화합물 반도체 해독 소자 집적 기술이 국내 기술로 개발됐다.

KAIST는 김상현 전기및전자공학부 교수 연구팀이 모놀리식 3차원 집적의 장점을 활용해 개발했다고 24일 밝혔다.

모놀리식 3차원 집적은 반도체 하부 소자 공정 후, 상부의 박막층을 형성하고 상부 소자 공정을 순차적으로 진행함으로써 상하부 소자 간의 정렬도를 극대화할 수 있는 기술로, 궁극적 3차원 반도체 집적 기술로 불린다.

연구팀은 양자컴퓨터 판독·해독 소자를 3차원으로 집적할 수 있음을 처음으로 보였다.

김상현 KAIST 전기및전자공학부 교수 연구팀의 정재용 박사과정이 제1 저자로 주도하고 김종민 한국나노기술원 박사, 박승영 한국기초과학지원연구원 박사 연구팀과의 협업으로 진행한 이번 연구는 반도체 올림픽이라 불리는 ‘VLSI 기술 심포지엄(Symposium on VLSI Technology)’에서 발표됐다.

VLSI 기술 심포지엄은 국제전자소자학회(IEDM)와 더불어 대학 논문의 채택 비율이 25%가 되지 않는 저명한 반도체 소자 분야 최고 권위 학회다.

양자컴퓨터는 큐비트 하나에 0과 1을 동시에 담아 여러 연산을 한 번에 처리할 수 있는 차세대 컴퓨터로, 최근에 IBM과 구글 등의 글로벌 기업이 양자 컴퓨터 제작에 성공하면서 양자 컴퓨터가 차세대 컴퓨터로 주목받고 있다.

기존 컴퓨터의 정보 단위인 `비트'의 경우 1 비트당 1개의 값만 가지는 것에 반해, 양자 컴퓨터의 정보 단위인 `큐비트'는 1 큐비트가 0과 1의 상태를 동시에 가진다. 따라서 비트에 비해 큐비트는 2배 빠른 계산이 가능하고, 2큐비트, 4큐비트, 8큐비트로 큐비트 수가 선형적으로 커질수록 처리 계산 속도는 4배, 8배, 16배로 지수적으로 증가한다. 따라서 많은 수의 큐비트를 활용한 대규모 양자컴퓨터 개발이 매우 중요하다. IBM에서는 큐비트 수를 127개로 늘린 `이글'을 작년에 발표했고, IBM 로드맵에 따르면 오는 2025년까지 4000큐비트, 10년 이내에 1만 큐비트 이상을 탑재한 대규모 양자컴퓨터 개발을 목표로 하고 있다.

특히 큐비트의 수가 많은 대규모 양자컴퓨터 개발을 위해서는 큐비트를 제어·해독하는 소자에 대한 개발이 필수적이다. 기존 컴퓨터와 다르게 양자컴퓨터는 통상 –273℃ 내외의 극저온에서 동작하는 큐비트 하나당 최소 하나의 제어와 해독 연결이 필요하다. 현재는 큐비트 수가 많지 않아 극저온에서 동작하는 큐비트와 상온의 측정 장비를 긴 동축케이블로 연결해 제어·해독하는 방식을 사용하고 있다.

극저온 제어판독 소자의 차단주파수 성능 비교. [출처=KAIST]
극저온 제어판독 소자의 차단주파수 성능 비교. [출처=KAIST]

하지만 수천 혹은 수만개 이상의 큐비트를 활용하는 대규모 양자 컴퓨팅에서 이러한 방식을 활용하면 양자 컴퓨터 크기가 매우 커지고 긴 연결 거리로 인해 신호 손실도 커 대규모 양자컴퓨터 구현이 매우 어려워진다. 따라서 큐비트를 제어·해독에 활용할 수 있는 저전력, 저잡음, 초고속 특성의 극저온 소자를 큐비트와 일대일로 연결할 수 있는 시스템 구성이 매우 중요하다.

연구팀은 이러한 문제 해결을 위해 큐비트 회로 위에 저전력, 저잡음 초고속 특성이 매우 뛰어난 III-V 화합물 반도체 고전자 이동 트랜지스터(HEMT)를 3차원으로 집적해 수천 혹은 수만 개의 큐비트에 아주 짧은 거리에서 일대일로 연결 가능한 구조를 제시했다.

III-V 화합물 반도체는 주기율표 III족 원소와 V족 원소가 화합물을 이루고 있는 반도체로 전하 수송 특성 및 광 특성이 매우 우수한 소재다.

연구팀은 250℃ 이하에서 상부 제어·해독 소자를 집적하는 웨이퍼 본딩 등의 초저온 공정을 활용해 이후 하부 큐비트 회로의 성능 저하 없이 3차원 집적을 할 수 있도록 했다.

연구진은 이러한 3차원 집적 형태의 제어·해독 소자를 최초로 제시 및 구현했을 뿐만 아니라 소자의 성능 면에서도 극저온에서 세계 최고 수준의 차단주파수 특성을 달성했다.

김상현 교수는 "이번 기술은 향후 대규모 양자컴퓨터의 제어·판독 회로에 응용이 가능할 것으로 생각한다ˮ라며 "모놀리식 3차원 초고속 소자의 경우 양자컴퓨터뿐만이 아니라 6G 무선통신 등 다양한 분야에서 응용할 수 있어 그 확장성이 매우 큰 기술이며 앞으로도 다양한 분야에서 활용할 수 있도록 후속 연구에 힘쓰겠다ˮ라고 말했다.



댓글삭제
삭제한 댓글은 다시 복구할 수 없습니다.
그래도 삭제하시겠습니까?
댓글 0
댓글쓰기
계정을 선택하시면 로그인·계정인증을 통해
댓글을 남기실 수 있습니다.

  • [인터넷 신문 등록 사항] 명칭 : ㈜한국정보통신신문사
  • 등록번호 : 서울 아04447
  • 등록일자 : 2017-04-06
  • 제호 : 정보통신신문
  • 대표이사·발행·편집인 : 문창수
  • 서울특별시 용산구 한강대로 308 (한국정보통신공사협회) 정보통신신문사
  • 발행일자 : 2022-07-05
  • 대표전화 : 02-597-8140
  • 팩스 : 02-597-8223
  • 청소년보호책임자 : 이민규
  • 사업자등록번호 : 214-86-71864
  • 통신판매업등록번호 : 제 2019-서울용산-0472호
  • 정보통신신문의 모든 콘텐츠(영상,기사, 사진)는 저작권법의 보호를 받은바, 무단 전재·복사·배포 등을 금합니다.
  • Copyright © 2011-2022 정보통신신문. All rights reserved. mail to webmaster@koit.co.kr
인터넷신문위원회 abc협회 인증 ND소프트